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The theory oi cllso accretion has recently become an important factor for the
solution of many astrophysical problems. Accretion discs are considered to
play a major role in the mode:lling of quasars, nuclear active galaLxies and X-ray
sources in harrow binary stars. We have enough grounds to claim that the
structure of stationary thin accretion gas discs -is relhtively well studied [15J.

Regardless of the progresls in these studies, the fundamental problem of
the disc accretion theofy, i. e. of its viscosity nature; is still to be resolved.
Obviously, theoretical investigations are not 

- 
sufficient. Regularr observation

data should be used on a broader scale accompanied by cornparisons between
theoretical models and experirnental results.

The non-stationary disc accretion is defined in rnany casers, where discs
are assumed to exist or are ,observed in the studied obiects. Therefore,. the

ill present the basis o'f understanding
rocesses. The study of non-stationary
tifically justified conclusiions about the
nsible for the transport of the motion

Many publications on non-stationary disc accretion are de'roted to these
problems [8, 9, 10, 11, 12, 13].

In another publication of ours we have found out that the temporal
behaviour of thin accretion discs mav be described with the non-linear diffe-
rential maintainance of ,,diffus;ion": -

(l) #:o u! rE,

where 2 angular momentum and F is the friction momentum
between cylindrical layers in the disc [12];the parameters rz
and n a by the viscosity nature and the bpdcity la* of the disc
t10]. ./ '-coefficient deiermining the velocity- of the processes.

A non-linear diffusion eQruation of a simpler type has particular'invariant
self-similar s6lutions. It is known that the id'ea oi'self-similarit'/ is related to



,l

frs [1, translofmations are represented
the equatidns oi the process. The

s for is detgrmifled by the d imens-
: time gth, m4ss; etc,, which represent

This type of self-similar solutions is featured ivith powef inrlices, which
represent simple quotients, determined elementary by dirnensional analysis ope-
rations and knowu as first order solutions.

We shall define further the role of these self-siinilar solu'rions and shall
demonstrate the pattern of their application into visc{sity problem solutions.
Sellsimilarity is a phenomenon u'hose features are obltaiied at different tirne
mornents by iu seq{cntial order. The scales
of sirnilarity, the nraih physical paraneters of
the equafion non. , , 

:

,".,rlil,li,: tquation,ror stationarv conduct-

9#: Qr r,
where Q is the constant diffusion, r is thc temperafure and / is the tirne,
The problern is to determine the temp
initial distribution is T:BrF, rvhere
coordinate system. If wp define the
and the time r then we can determ
l?l: L-p\. ,'

A is the .only constant independe
mined and there is no other constant
from the el'ernents given above. '[he-ref
Sent in the solution. Sometimes, alter t
length scale depending gn the time m

t)ft''l:fQt)t1z' I l

The lirne-depencient ter4perature scaie may bc defiri d in a similar way :

f "(t): BL"(qr; 
L

The solution of the problem. slould yield 'I ,as a function of I and r. In
non-dimensional form this is :
'i: 

T.Tj

The,non-dirlcnsional form should

tter is naturally a Lero and'does not e

tneasured in [t] alone and may be exp

tlre solrrtion in the fornr of T:.BL:\T*
and T* is a non-dimensioni:l fLrnction
rhentd''The obtained result'is a self-sim
aie used.
lengtb. It
es 6f Z-
sent the-
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Thbrefore, the presence of several dimensions oi the independent consta_qts'

including the boundary conditions of the problem,i defines the neeessity.of q

self-similar solution. :

Let .us examine now ieveral problems wherc the self-similar solutions are
of first order [1,3]. l'he first problern - the time behaviour of a thin disc:'
is deterrnined'by'equation (1j unde,r the assumption that for ttre initial rno-
mentrrm l-0 the distribution is: ,

(2) F: Bh".

The dimensions of all values in equation (1) anC the, iniitial coldition
(2) are : 

rht,- 7zr--r ; [tr: x ' rFr: A4yzr-z ,

(3) lAl : U-'"t-2(n-n+2) 
"2n-n-?;

lB): UtEt-o) ro.-2,

rvhere r is the time dimensi6n, 214 is the mass dimen,sion and L is'the lengfh
dimcnsion.

Let us det.errrine the typical scale ol the tot4l angular mom.eqlyn Q"(t)
and thc typical friction mom'enturn scale f,(l) for qach montdnt />0. Thefirst
value is yi'.taeO by the dimensional analysis'6f equation (I), irainely: i '

(4) h,(t):(AF,(t)''D h'
and for F,(t) we use the initial distribution :

(5) F"(t):37"171".

Substituting expression (5) into (4), we obtain lot lt":

(6) h,(t):(A.B"t)r**ga

The solutien of the problenr yields F as a-iunction ol h and I and may
be u'ritten down in a non-dimensional form as: '

' " ' -f - n#,*:F. (X; 1):'.(+) '

Therefore, the function F will take the shape of :

(7) F(h.t):Bhi@F,r(+-\.

If we substitute (6) into (z), we shall ;;" the dependence in ceveloped
form, and using equafitins (7)'ahA 1t; we may write the following eqqation
for 'F,.:

\ .- /tF . .. /-'tn (72Fn/ -i- \ r, /--^1- -\ \% : q(t)t# )1n,,-,

\n+z-um )' '* \n+2-um1 
' ae ' \ t \'L n\

wlrere \: +^. The function q(l) is an expression containing only the time.
..- n(V)

This functionl should equal a unit in qrder to provide a self-srirnitai solution
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for the above equation. And, indeed, f
condition is satisfied. Therefore, we m
form of:

(8) 
( *|_*,)n,,,-(

configuration is satisfied through
substance angular momentum [2], 

t r,,

K:2n .[ 2 ,ror,

where I is the surface disc densitv [1
the distance to the disc center. Subsil
in equation (1) [10], we obtain the fol

, ht,

(lo) K:2n f F-
il

Another approach to find the nec
self-sirnilar soiution of equation (7) is r

in solutions of the type: -

(s)

(l l) F: Ct-"F.+(e),

where t :!-,- Btp
which reduces the probletr to a routine differential
tlons.I After substituting- equation (11) into (1) and (10)
necessary conditions for the availabilitv of a self-sinii

(t2a)

(12b)

The equation rvhich defines ilre function ft is:

afr +(#)(,+ldl.: +tnF- -(13) pn,lrft -ll-*\ Fn+7dF* , vnc' * -ctE -\rTn)q ---1-q r' 0.. + u, \z+n/
We shall exarnine belorv some p

this solution can be applied.
If a stationary disc has existed in

ment, and due to some reason the i
ihis cnlrfinn urill rlaon'iLo +L^ ^.,^t..r:^
ursut, .1llu uus L() some rgason tne I
this solution will describe the evolutior ur r,rc rc*rrqe! or rne qrsc suDsrance,



The same approach on the applicability of equation (13) can bi made in
the following manner: if we have a distribution of the type F:O(lz) at the
initial moment, then it will contribute indirectly to integral (10). The function
F:o(r),should simply be determi4ed with respect to ft.

We have to underline here that this method provides a possibility to
expand the number of the astrophysical problems, which may be resolved by
the first problem set up in this pape{, since the :substantial fact is that the
distribution should represent a power law of the specific angular momentum.
The,unique condition to be rnet by the solution'of. equation (13) is to satisfy
the law ol preserving the q,uantity of the total.'angular momentum throughout
the tirre development of the initial configuration. Of course, the best proof of
this affirmation will be to compare the solutions ol equations (13) and (l) for
particular derivatives.

Another type of this'problem relates to the modelling of the substance
behaviour in accretion discs, when the mass integral is satisfied during,the
evolution process,

Let us examine again equation (l). Applying by analogy the method used
!y Sedov [7] for the obtaining of the mass integral with-ref,lrence to rotat-
ing Iluid, lve can obtain the corresponding algebraic , i.llesrqt for the solution
of ourproblem. ,1'-

Following the same pattern, let us examine the demensions of the input
values:

(14) . lFl: ML2t2; [h]:22"-t ; [2]: ML-z;
[M]:M; \[B]: Lzxt-6.

We are looking for a solution oJ the type F,:Bt-"F,t([), where E.:,,#.
Following Sedov's approach [7], we introduce a supplemenrtary parameter

fal:MLk'c", where a., k, s are unknown, if no particular consideration on the
rlature of the phenomenon is involved.

Using in a summarized manner the above mentioned development, we can
determine some supplementary values, namely:

(15) a) u, : lV1E1 radial velocity ;

(16) b) >: 
-hft(() 

/'surface density;

(17) c) U:#-UGI the mass between.two fixed radii.,
r* t'

' Performing almost the same computations as in [7], we ,obtain the mass
integral in a final form as:

( l8) {(s + za ilu(€) * 2nR(€)( y(g) - 26)} : const (?*.

Knowing functions ft(() and (6), we'may determine the temporal mass be-
haviour between two radii. Using the theory of the disc accretiion, these relat-
ions take the shape of(14):

R(€): Lo+zn+t F*(E1tt-n1 '

V(1) - -.(-(n 
+r I F^-(-a-{ .

(1e)

(20)
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,. The equation
. qogfficients difJer' :

(2r)

satisfying function /(€) is similar to

,): # r5g'+r Tr{nor.,n,-l,

equation (13) but tlte

rthete u,,'6,are defined bv dimensional analvsis.
" ' jl,et us examine the values u" and X in view of thl disc accretion theory,
usfng,the dependences which are relevant to each and any moment. Our pur-
pose 'is rto determine the dependence betu'een the dim(nsion coe'lficients and
the power indices. As a final result we obtain the follfrving equation system
ilefining the power indices: 

I

(22) ,

2ft6-Fs*1:g;
6(2k + n I I )-o.(1 - nr) 1 s : 0 ;

2ft6+6+ 1-cr-s:0;
26+6n*um- I :0.

''n'i 
Tlr. iolutions corresponding'to th. system (22) are:

, :.
(23) 

rn.+t-"t 
'

K:_;en_n_

Thus, ,with the power indices obt
funCtion ft, the equation (21) yields
behaviour of ,the accretion disc, under
satisfied; The solrttion of 'the, equation
be used for describing the temporal
around a gravity centre.

In the case where the right,side
zero, we shali observe in d=ependenc
decrease of the total tore or clisc mas

We should note that usuallv in a
grals must be used, i. e. the iniegral
ment of quantity motion and the mas
a disc evolution involving contributio
secondary component; ,both the disc m
change. This imposes the necessity of investigating morQ complicated problems
ry.ligh will be the subj.ect of further studies.

Discussion

The three methods proposed f.or the solution d to
equation (1) provide for the possibil ty of buildin and
qualitative models of' non-stationary sources with e of
accretion discs. The obtaining of a large class of parti and their
comparison with the obsetvational data for transient a stars pro-
vides for the closer understanding oi the physical"proc sc accret-'
ion. Examining the methods given here and based analysis
approach, as well as comparing them with simi_lar physibal methods 11,4,5,7l,,
we can obtain the power index solutions clepending on lthe pararneters rz and
a. In turn, they will provide the definition of the phybical processes of the
thin accretion disc viscosity and of the plasma opacity.



On the basis. of observations of cataciismic stars and transient X-ray sour:
ces it is determined that their luminosity alter f attainihg a rtra;xifnum'd€treaSeS
almost after a power law in time. This provides grounds to believe .that
by comparing the model sohrtions and the existing phy.sical hypotheses wc
can obtain estimation of the scale and nature of the physical processes
in the disc' ' | ': '1 I I i:

On the other hand, this paper iding for. thc
obtaining of self-sitirilar solutions Sq.qfiqns aqg.

also available [, 41. The second o posii$ility of
estimating new models, thus yieldi sp$'onlastro-
physical considerations.

In conclusion ive shall underline
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06 agrorrroAeJrbnbrx peuegr.rsx saraql Aacxosori aKpelluu'
I

JI."f, @uttunoe
-:
(Pesroue; 

r

-;lH,qpoAHHaMHrtecKHe ypaBHeHHn HcrroJrbgyroTcR KaKpou brx AucKoB Boreyr qlHofi HB. Ko
B,A

JrbHble 'ypaBHeHHs 
- neaHneiinue

H3 rqeroAoB MoAenH-
IIAKTHHX KOMNOHCHTOB

ypaBHeH[e, HCXoAq na
fl B JISIOTCfl C TENEHHhIMI,t

o6rercroq, rAe Moxr{g.
rr c petlleHuf,I4ll ypaPl

MOAeJrbHhrM peIIIe-
B Hacrosu.(eft. pa6ore.

Moryr 6rrrg peurguu
npH noMotrlH rtrrcJreHHhrx HJrH TeopeTHKo-fpynnoBbrx AOB.

B Hacrosuleft ,pa6ore aarop ucnonb3yer Mo4e.'lbnoe

l?eAqonoxsHnr, 
qlg saKoHbr BflsKocrr.r u Henpospaurr

Qynxqr.rnun .toralLnulx napaMerpoB aKpeqnoHHoro AHc
AAlFtre Ha6rrcAenng HecraquoHapHux rounaKTHbr

OXH-[aTb CVlrIeCTROnillslA.;l Al/.'lprru^qulrv nrrpvlD ^noDwrtH,[aTb cyqecTBoBaHntr aKperIHoHHbIX Ar{cKoB, cpaBnH

acrpoQHeuvecrHe upo6reMbt, crrflrafl, qro oHH Benyr r(
llfiflM nepBoro poAar Hcnoflb3yfl ypaBHeHHf, nonyqeHHble

H,ftrnfi,,coaepxarqHX 6oarudncrao o6uux [peAnono Q Qnauuqcrux npo-
qeccax B. Aucr{ax. Anrop cgnTaqr, qro 3,ro naliAer np'n HeHHe B OnpeAeJreHr.ilr.
npapoAbt r uacurra6a ssJreunft. TarHu o6paaou cQopl.ly BaHHbr rpt{ peanbHbre
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