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The theory of dis¢ accretion has recently become an important factor for the
solution of many astrophysical problems. Accretion discs are considered to
play a major role in the modelling of quasars, nuclearactive galaxies and X-ray
sources in narrow binary - stars. We have 'encugh grounds to claim that the
structure of stationary thin accretion gas discs is relatively well studied [15].

Regardiess of the progress in these studies, the fundamental problem of
the disc accretion theory, 1. e of its viscosity nature, is still to be resclved.
Obviously, theoretical investigations are niot sufficient. Regular observation
data should be used on a broader scale accompanied by comparisons between
theoretical models and experimental resuits.

The noiu-stationary disc accretion is defined in many cases, where discs
are assumed to exist or are observed in the studied objects. Therefore, the
investigation of this type of solutions will present the basis of understanding
the natural physical phenomena and processes. The study of non-stationary
discs provides possibility to make scientifically justified conclusions about the
nature of the viscous mechanisms responsible for the transport of the motion
quantity momentum in the discs.

Many publications on non-stationary disc accretion are devoted io these
problems {8, 9, 10, 11, 12, 13].

 In another 'publication of ours we have found out thai the temporal
behaviour of thin accretion discs may be described with the non-linear diffe-
rential maintainance of “diffusion™;
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where 4 is the specific angular momentum and F is the friction momentum
betweetl two adjacent cylindrical layers in the disc [12]; the parameters m
and n are determined by the viscosity nature and the opacity law of the disc
[10]. A is a “diffusion” coefficient determining the velocity of the processes.

A non-linear diffusion equation of a simpler type has particular invariant
self-similar solutions. It is known that the idea of self-similarity is related to
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the transformation groups {1, 3, 4, 5, 7]. These trausiormations are represented
into the differential or the integrodifferential equations of the process. The
- group of transformations for the given equation is determined by the dimens-
ions of its input values: time reference unit, length, mass, etc,, which represent
a simple case. :

This type of self-similar solutions is featured with power indices, which
represent simple quotients, determined elementary by dimensional analysis ope-
rations and known as first order solutions. :

We shall define further the role of these self-similar solulions and shall
deimonstrate the pattern of their application inio viscosity problem sohutions,
Self-similarity is a phenoinenon whose features are obtained at different time
motents by the {ransformation of similarities in sequential order, The scales
of similarity, in turn, represent a function of the main physical parameters of
the equation describing the physical phenomenon, tptimiia-tl 44}

Let us examine the temperature diffusion equation for. stationary conduct-
ive medium: ] : i

or p
o= v

where @ is the constant diffusion, 7 is the femperature and ¢ is the time.
The problem is {o determine the temperature in the successive moments, if the
initial distribution is T—Br®, where r is the distance to the centre of the
coordinate system. If we define the scale of the temperature 0, the distance L
fmd the time v then'we can determine 'dimensions Q and B: [Q]=t'L% and.
Bl=1L-00. . - | - ' -

Q is the only constant independent of 0. The problen is precisely deter-.
mitied and there is noother constant of length or time dimetision to 'be obtained
from the elements given above. Therefore, such a constant should not be pre-
sent in the solution. Sometimes, alter the beginning of the process, the typical
length scale depending on the time may be defined as: i -

LA RE P bovir ad bl
The time-dependent temperature scaie may be defired ‘in a similar way :
Tty =BL(". '

The solution. of the prolﬁlem.. should yield 7' .as a function of t..and r. In
non-dimensional form this is: 35 breminy: '
S 7 =g

Z‘l'.c' = B!‘B

- ! . : A r £
[he nen-dimensional form shoudd be a. function of T and g The la-
Lt

tier is naturally a zero and does not enter the examined problem since £ is

measured in {t] alone and may be expressed by Q, B and £ Thus, we obtain
r

the solution in the form of T:BL}_?T,E;(),—M )., where L(f) is already defined
and 7, is a non-dimeasional funciion composed of its non-dimensional argu-
wments. “The oblained resuit is a seli-similar solution, since time-dependent scales
ate ‘ised. The! temperature  scale is always a function  of the scale featuring
length. 1t is the self-similarity of the problem which denotes that variable scal-
¢s of L, and 7, may be selected, which provides for the possibility to repre-
scnt the scale of the phenomenon characteristics by a single variable function.
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Therefors, ‘the presence of several dimensions of the independent -constants
including the boundary conditions of the problem, defines the necessity of
self-similar solution. ) : : {0 pro

Let -us examine now several problems where the self-similar solutions are
of first order {1,3]. The first problem — the timeé behaviour of a thin disc -=
is determined by equatioft (1} under the assumption that for the initial mo-
mentum £=0 the distribution is:

(2) F=Bh", ; £

The dimensions ‘of all values in equation (1) and the initial condition
(2) are: oA AiFistin
_ RS LAY T =T [Fl=MLW 2,
(3) [A] = M- —Un—mt2) gl =m—3 ;-

[ B] = M A=) (52 .
where T is the time dimension, M is the mass dimension and [ is the length
dimension. =t ;

Let us determine the typical scale of the total angular momenturm A.(f)

and the typical friction momentum scale F.(f) for each momént £>0. The first
value is yielded by the dimensional analysis of equation (1), namely: '

1
(4 J hdE)=(AF ") g0
and for F(f) we use the initial distribution:
(5) - F8y=Bhit).
Substituting expression (5) into (4), we obtain for 4,:
y s AL e l
(6) | Ry =(AB" )5

~_ The solution of the problem yields F as a function of # and { and may
be written down in a non-dimensional form as: S

F (EEg Bt i
& e =l ) =B

Therefore, the function F will take the shape of:

{7 F(&.t;:_gkg(c)@( g) |

If we substilute (8) into {7), we shall obtain the dependence in developed
form, and using equations {7) and (1) we may write ihe following equation
for F.: ' ' '

B I dF " F;'”_ d2r,
(;z_l'_g._a'ﬁi)ﬂ-s— (E_—Q—:ﬁ)ﬁ de = (£ -E;r TgEe”
h . . 9
St it Ai) ¢ id 1 _
This, function should equal a unit in order te provide a self simnilar selution

where &= The function ¢(f) is an expression containing only the time.
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for the above equation. And, indeed, for each distributi,ﬁn of the type (2) this
condition is satistied. Therefore, we may write down equation (8) in the final
form of:

_ o 1 dFy  F.|dF,
) (n—ﬁ:aa) Fy —(ﬁ:aa)ﬁag = e

Equation (8) provides the possibility for both qualitative and’ quantitative
description of some non-stationary phenomena in the laccretion disc, This fea-
ture of equation (8) has been the subject of our other works [10].

The second problem leading toi a self-similar solution of first order for
equation (1) is the following: the evolution of the acéretion disc is described
by equation (1) under the condition that the time development of the initial
configuration is satisfied throughout the process by the integral of the total
substance angular momentum [2], namely :

(9) K=2n f X hrdr,
where X Is the surface disc density [15], £ is the angular momentum and 7is
the distance to the disc center, Substituting = with F|similar to the procedure
in equation (1) [10], we obtain the following condition:
s A
(10) K=2n [ Pl bl dh = const,
};J
Another approach to find the necessary conditions for the availability of

seli-similar solution of equation (7) is {o determine the power indices o and f
in solutions of the type:.

(11} F=CEtFy(8),

where & L
8¢k :
which reduces the problem {o a routine differential equation of finite condi-
tions. ' - '
After substituting equation (11) inte (1) and (10), we obtain the following
necessary conditions for the availability of a self-similar solution:

L—m.
'...l
! Al_me n+2
126 Lok B:-[. ] .
( ) C— QﬂA {Qﬂ)m
The equation which defines the function F, is:
girs daFﬂ_‘- 1-m it 1@""*_ n e
R T e

We shall examine below some possible astrophysical phenomena, where
this solution can be applied.

If a stationary disc has existed in a binary system prior to a certain mo-
ment, and due to some reason the inflow of the normal component ceases,
this selution will describe the evolution of the reminder of the disc substance.
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The same approach on the applicability of equation (13) can be made in
the following manner: if we have a distribution of the type F=&(k) at the
initial moment, then it will contribute indirectly to integral {10). The function
F=®(1) should simply be determined with respect to 4.

We have to underline here that this method provides a possibility to
expand the number of the astrophysical problems, which may be resolved by
the first problem set up in this paper, since the substantial fact is that the
distribution should represent a power law of the specific angular momentum.
The unique condition te be met by the solution of equation (13)is to satisfy
the law of preserving the quantity of the total angular momentim threughout
the time development of the initial configuration, Of course, the best proof of
this affirmation will be to compare the solutions of equations (13} and (1) for
particular derivatives.

Another type of this-preblem relates to the modelling of the substance
behaviour in accretion discs, when the mass integral is satisfied during the
evolution process, :

Let us examine again equation (1). Applying by analogy the method used
by Sedov [7] for the oblfaining of the mass integral with reference to rotat-
ing fluid, we can obtain the corresponding algebraic integral for the solution
of our problem. T S (PR '

Following the same pattern, let us examine the demensions of the input
values:

i [Fl=AML322; [B]=L814; (L] M2,
() (Mi=M; [Bj=L7"% '

We arc looking for a solution of the type F= Bf—“F (&), where é;.b%-

Following Sedov’s approach {7], we iniroduce a suppiementary parameter
[a]l=ML#%, where @, k, s are unknown, if no particular consideration on the
nature of the phenontenon is invelved. _

Using in a sumnarized manner the above mentioned development, we can

determine some supplementary values, namely: ;

(18) &) v,=--V() radial velocity;

(163 D)2 = —rk-fja?-}?(é) "fsurfage density;

(17} ¢ M=k—‘;s-M(E_,) the mass between two fixed radii;:
b _ .
Performing almost the same compittations as in [7], we obtain the mass
integral in a f{inal form as: .
(18) {(s + 228)M(E) — 2mR(EX V{E)— 28)} = const E24,

Knowing functions R(E) and (&), we may determine the femporal mass be-
haviour between two. radii. Using the theory of the disc accretion, these relat-
ionts take the shape of (14): :

(19) R@):gnwkn F$(&.)“_m) :

o 4t ey o ity G
(20) V(= =gt pee-ms
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The equation satisfying function f{f) is similar to equation (13) but the
‘cocfﬁcxenis differ:
@F,

; [} ; R i nalq
2y - P O g sgna iy gERF, 0,

where o, 8 are defined by dimensional analysis.

' Let us examine the values v, and X in view of thg disc accretion tleory,
using- the dependences which are relevant to each and any moment. Qur pur-
pose-is‘to delermine the dependence between the dimension coefficients and
the power: indices. As a final result we obtain the foIIowmg equatmn aystem
defmmg the power indices:

2k6+5+1=0;

82kt 4 1)—o(l—m) + =03
k0 +8+1—g—-5=0;

2B+ 86ntoum- 1=

@)

“*"'The Solutions corresponding to the system (22) are:
3 1

O Hidem = nt2=m*

Keg (m—n—3);  $=mmomm

{23}

" Thus, with the power indices obtained and for the finite conditions of the
fun¢tion £, the equation (21) yields a solution which describes the temporal
behaviour of the aceretion disc under the condition that ‘the mass integral is
satislied. The selution of the equation (21) with the power indices (23) may
be used for describing the temporal evolution ‘of the substance tore formed
around a gravity centre. .

In the case where the right-side constant of equation (18) differs from -a
zero, we shall observe in dependence on the sign elther an increase or a
decrease of the total tore or disc mass.

We should note that usually in a real time situation both algebraic inte-
grals must be used, i e. the integral reflecting the situation prior to the mo-
ment of quantity motion and the mass integral. When we examine the. case of
a disc evolution involving contribution of a substance flux inflowing from a
secondary caomponent; hoth the-disc mass:and the moment; of quantity motion
change. This imposes the necessity of investigating more complicated problems
which will be the subiect of further studies.

Discussion -

The three methods proposed for the solution of the problems related to
equation (1) provide for the possibility of building up both quantitative and
© qualitative models of non-stationary sotrces with the assumed existence of
accretion discs. The obtaining of a large class of particular solutions and their
comparison with the observational data for transient and cataclismic stars pro-
vides for the closer understanding of the physical processes of the disc accret-
ion, Examining the methods given here and based on a general analysis
approach, as well as comparing them with similar physical methods [1, 4, 5, 7}
we can obtain the power index solutions depending on the parameters m and
#. In turn, they will provide the definition of the physical processes of the
thin accretion disc viscosity and of the plasma opacity.



On the basis of observations of cataclismic stars and transient X-ray sour-
ces it is determined that their luminosity after ‘altaining a' maxifnum decreases
almost after a power law in time, This provides grounds to belisve that
by comparing the model solutions and the existing physical hypotheses we

can obfain estimation of the scale and nature of the phy>1cal processes
in the disc.

On the othier hand, this paper examines only methods provzdmg for the
obtaining of selfsimilar solutions of first order.” Second order souhons 3re
also available {1, '4]. The second order solutions provide for t‘he possiility “of
estimating new models, thus y:eldmg solutions of this ordcr hu sed on Ero-
physical considerations,

In conclusion We shall underline another essential fact, quuatloﬁ (1) s
closely approximating the equations describing the combustion prouere‘ses and
some of the plasma processes [6]. Certain non-routine processes, typlcal for
non-linear plasma and combustion” properties are also to be onervéd within
these physical phenomena, i. e. self-organization, self-focusing, ‘etc.” Thzs prov-
ideés grounds 'to believe that 'such 'phenomena may also be éxpectéd in disc
accretion processes. These aspects deserve specific attention and ‘shoifld become
the subject of future investigation of the ‘nature and the propertleq of the
accretion dibCS
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O6. agromoenbHbIX 'p_e_u'ieﬂnﬂx 3afaul ‘ IUCKOBOW aKperuu’
J.T. Ousunos
(Peswn &) . , | .

THApo/luHaMutieckie YDaBHEUHS HCMOAB3YIOTCA KAK OJHH M3 METOLOB MOAE/H-
POBAUHS HECTALMOHAPHBIX JMCKOB BOKPYT OfHON 13 KOMNAKTHHX KOMIOHEHTOR
B, IBOHHBEIX CHCTeMax, . _ i .
[Tonyuennsie Moseassbie ypasHenus — mesuneiinsie n MOPYT OBITh peILSHBl
TPH OOMOIUH YHCJEHHBIX WJH TEOPeTHKO-TPYIINOBLIX METOAOE, i
B nacroameft paGote amtop HCOONB3YeT MONENBHOE| YpaBHEHHE, KCXOAS H3
NPEANOACKEHHR, UTO 32KOHK BAIKOCTH M HENPO3PAUHOCTH SBJAIOTCH CTENEHHBIMH
QYHKUMAMA TOKANLHEIX NADAMETPOB AKDEUHOHKOTO AMCKA. ale a5 ilinon
. Rannele nadmonenns HECTAIHOHADHWX XOMIAKTHLIX 00BEKTOB, T1e MO}KH_Q_
OXHAATH CYIMECTROBAWAN AKPEUMOHHBIX AUCKOB, CDABHMHBANA C PELISHHSIMHU YPAB-
HeHHH, coMlepaituX GoALIIKHECTRO 0BIIHK NpeAnoAcKeHnH o (pHauyeckux npo-
HECCax B AHCKAX. ABTOD CUMTAET, 4TG 3TO RAHZET NPHMEHEHHE B OTPENe/ieHHH,
Nprpobl i MacinTaba ssackuil. TaxuM o6pasou cpopMyNHPOSARHE] TpH peasbHbIE
aCTPOMHIHUECKHE NPOGAEMB, CHMTAf, HTO OHM BEAYT K ABTOMOACIBHEIM pelile-
HHAM MEPBOTO POAR, UCMOAB3YS YpaBHEHUA, NOJydeHHBIE B HacTosulel.paGote,
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